

Helpful Things to Memorize

08/08/25

This stuff isn't on the GED formula sheet. It's things you'll need to be able to do to pass the test.

Order of Operations:

P → Parenthesis or grouping symbols { [(do inner-most grouping first)] }

E → Exponents and Roots

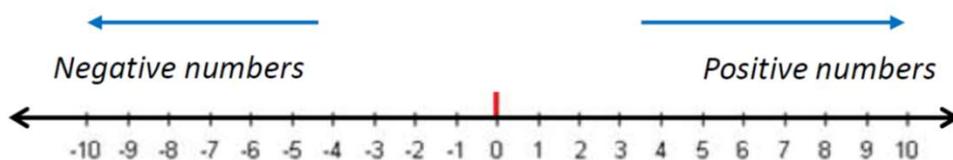
M → Multiplication } whichever comes first – in order

D → Division } from left to right.

A → Addition } whichever comes first – in order

S → Subtraction } from left to right.

Multiplication and division are on the same level of importance.


Do them left to right in the order they appear (not M before D just because of the order in the acronym and list). Same for addition and subtraction.

Numbers on the number line

Numbers this way are smaller

Numbers this way are larger

For example:

- 4 is larger than -2 because it is further to the right. $4 > -2$
- -10 is smaller than -5 because it is further to the left. $-10 < -5$

Signed numbers:

Multiplication and Division: if the signs are different, the answer is negative

Addition and Subtraction:

Rule 1: Subtracting like signs, add the absolute values of the numbers and keep the negative sign.

$$-6 - 4 = -10 \quad -70 - 40 = -110$$

Rule 2: Subtracting a negative is same as adding a positive.

$$-6 - (-6) = -6 + 6 = 0 \quad -34 - (-22) = -12 \quad -3 - (-6) = 3$$

Rule 3: Unlike signs, find the difference of the absolute values, keep the sign of the larger number.

$$25 + (-10) = 15 \quad -30 + 10 = -20 \quad 155 + (-90) = 65$$

Laws of Exponents

Some of these are tricky. No idea why these aren't on the formula sheet.

$a^1 = a$ \longleftarrow ANY non-zero number to the first power
= the number

Examples: $x^1 = x$ $7^1 = 7$

$a^0 = 1$ \longleftarrow ANY number to the zero power = 1

Examples: $5^0 = 1$ $x^0 = 1$ (as long as $x \neq 0$)

$$(3a^2b)^0 = 1$$

$$a^m \cdot a^n = a^{m+n}$$

Examples: $(x^5)(x^2) = x^{5+2} = x^7$

$$(2^3)(2^4) = 2^{3+4} = 2^7 = 128$$

$$\frac{a^m}{a^n} = a^{m-n}$$

Examples: $\frac{x^7}{x^3} = x^{7-3} = x^4$

$$\frac{5^6}{5^2} = 5^{6-2} = 5^4 = 625$$

✓ **Test taking tip:** Suppose when taking the test, you freeze up and can't remember the rule. Make yourself a simple example and you'll see the rule.

$$\frac{x^4}{x^2} \text{ means } \frac{x \cdot x \cdot x \cdot x}{x \cdot x} = \frac{x \cdot x \cdot x \cdot x}{x \cdot x} = x \cdot x = x^2$$

There's the rule: for division, subtract the exponents ($4 - 2 = 2$)

Similarly:

$$x^3 \times x^2 \text{ is } x \cdot x \cdot x \cdot x \cdot x = x^5$$

There's the rule: for multiplication, add the exponents ($3 + 2 = 5$)

Laws of Exponents (continued)

$$a^{-n} = \frac{1}{a^n}$$

A negative exponent says “put it in the denominator and change the sign”

Examples: $x^{-2} = \frac{1}{x^2}$ $x^{-1} = \frac{1}{x}$

And, if negative fractional exponents show up (completely unfair), try to remember these examples:

- $x^{\frac{1}{2}} = \sqrt{x}$
- $x^{\frac{1}{3}} = \sqrt[3]{x}$
- $x^{\frac{2}{3}} = \sqrt[3]{x^2}$

Key idea: A fractional exponent means a root.

 Tip: Say aloud — “Bottom of the fraction is the root. Top is the power.”

The formula for **simple interest**, I , is on the GED formula sheet. But there are a few key things to remember.

$$I = P \cdot r \cdot t$$

P, principal, is the amount being considered, usually in dollars
r, the interest rate, will be an annual rate, usually expressed as a %.

Convert it to a decimal to use it in the equation.

t, is the time. It may be expressed in weeks or months or some other unit of time, but **you must convert it to its equivalent in years to use it in the equation.**

Always **pay attention to what the question is asking.** Sometimes it will be interest, other times it might be something like how much is paid back on a loan (which would be principal + interest).

Example: Andy borrows \$2,500 from his sister for 18 months at 6% simple interest. How much interest will he pay on the loan?

Write the rate as a decimal. $6\% = 6/100 = 0.06$

Convert the months to the equivalent in years.

18 months = 1.5 years

$$i = prt = (\$2,500)(0.06)(1.5) = \$225$$

Distributive property of multiplication and division examples:

$$5(x+2) = 5 \cdot x + 5 \cdot 2 = 5x + 10$$

$$\begin{aligned}(x-2)(x+5) &= (x)(x) + (x)(5) + (-2)(x) + (-2)(5) \\ &= x^2 + 5x - 2x - 10 = x^2 + 3x - 10\end{aligned}$$

$$\frac{5x^2 + 10x + 30}{5} = \frac{5x^2}{5} + \frac{10x}{5} + \frac{30}{5} = x^2 + 2x + 6$$

Factorial (!): $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
 $3! = 3 \times 2 \times 1 = 6$

Good to understand, but can also be done using the “prb” key on the TI-30XS calculator, third option in the menu.

Scientific Notation

Scientific notation expresses a number as the product of a number, between at least 1 and less than 10, and a power of 10. This make it easier to write very large and very small numbers.

Common name	Decimal form	Power of 10	Scientific Notation
One millionth	0.000001	10^{-6}	1×10^{-6}
One thousandth	0.001	10^{-3}	1×10^{-3}
One hundredth	0.01	10^{-2}	1×10^{-2}
One tenth	0.1	10^{-1}	1×10^{-1}
One	1	10^0	1×10^0
Ten	10	10^1	1×10^1
One hundred	100	10^2	1×10^2
One thousand	1,000	10^3	1×10^3
One million	1,000,000	10^6	1×10^6
One billion	1,000,000,000	10^9	1×10^9
One trillion	1,000,000,000,000	10^{12}	1×10^{12}

Scientific notation examples: $2.13 \times 10^3 = 2,130$

$7.5 \times 10^{-4} = 0.00075$

$9.8 \times 10^6 = 9,800,000$